

ALBATROSS

ALtimetry for BAthymetry and Tide Retrievals for the Southern Ocean, Sea ice and ice Shelves

Mathilde Cancet¹, Ole Andersen², Geir Moholdt³, Michel Tsamados⁴, Thomas Johnson⁴, Florent Lyard⁵, Marco Restano⁶, Jérôme Benveniste⁶

¹NOVELTIS, ²DTU Space, ³Norwegian Polar Institute, ⁴UCL-ES, ⁵LEGOS, ⁶ESA/ESRIN

ALBATROSS overview

- 2-year project (2021-2023)
- Funded by ESA in the frame of the Polar Science Cluster, EO4Society Programme

More details, documents, and products, ultimately:

albatross.noveltis.fr

ALBATROSS overview

All oceans are connected in one global ocean where the Southern Ocean plays a major role.

Including for the ocean tides, with key role of large ice-shelf regions.

M2 tide – With Antarctic ice-shelf cavities

ALBATROSS overview

Knowledge on ocean tides in the Southern Ocean is still limited by several factors:

- > In situ and satellite observations availability and accuracy
- > Bathymetry quality
- > Coastline / grounding line location
- > Friction under the ice...

In the Arctic Ocean, M2 tide seasonal variations locally > 20 cm due to sea ice cover

Paper in prep., Arktalas project

Today, global tidal models (GOT, FES, TPXO...) are ice-free.

FES2014 M2 amplitude (m) and locations of assimilated

ALBATROSS project

24/11/2022 ©NOVELTIS - NOV-FE-1176-SL-077 - ESA Polar Science Cluster meeting 2022

Tidal estimates from CryoSat-2 altimetry data (DTU)

CryoSat-2 (2010-2019) SAR+SARin (>80% of the area) retracked with SAMOSA+ by ESA GPOD service CryoSat-2 LRM from RADS 1 Hz products

Add other satellites when available and when it improves the solution (SARAL/ENVISAT/Jason-1/2/3) SLA averaged within 0.5 x 3 degree cells

Comparison to in situ stations from Zaron, King & Padman datasets

RMSVE (cm) 30 stations	FES2014	GOT4.10	CATS08	Zaron 2018	DTU22
M2	4.51	4.3	4.5	3.9	3.88
S2	4.43	8.8	7.6	6.8	2.76
K1	6.04	4.5	2.4	2.8	2.43
01	6.69	5.6	1.2	2.1	2.61
8 selected					

Results for GOT4.10/CATS08/Zaron are from Zaron et al., 2018 Table 5

Extremely valuable new altimetry dataset to explore tides in the Southern Ocean, and for validation/assimilation into models

High-resolution regional tidal modelling (NOVELTIS)

Tidal modelling strategy based on TUGO-m hydrodynamic model (LEGOS)

Same approach as for the FES2014 and FES2022 global models

- High-resolution unstructured mesh grid
- Careful definition of the model extent
- Regional/local tuning of the model parameters
- Altimetry and tide gauge data assimilation

Bathymetry improvement – in the deep ocean (DTU)

Bathymetry and gravity are correlated only on a limited spectral bandwidth (~20 – 100 km)

1 mGal gravity anomaly ~ 15 m bathymetry

$$H_{p}(x) = B_{long}(x) + S(x) \cdot G_{BP}(x) + B_{short}(x)$$

H_p : predicted bathymetry

B_{long}: a priori bathymetry (basis)

 ${\bf S}$: scaling factor to convert gravity to topography, in m/mGal

 G_{BP} : band-pass filtered gravity

 \rightarrow Less effective in shallow waters

Prior bathymetry dataset: BedMachine_Antarctica-2020-v2 (*Morlighem et al., 2020*) + RTopo-2.0.4 (*Schaffer et al., 2019*) to cover the whole area of interest.

Combined with: DTU21 gravity field based on CryoSat-2 data reprocessed with SAMOSA+

Bathymetry improvement – in the deep ocean (DTU)

Tested against 5.8 millions bathy observations (std 695 m), available down to 60°S only... and already ingested into BedMachine.

→Local improvement observed but direct validation is quite limited due to lack of (independent) data

Diff (m) with surveys	mean	std	min	max
BedMachine	-32	235	2453	2678
DTU-ALBATROSS	-33	224	2453	2769

Hydrodynamic tidal modelling can be used as a proxy to assess the new bathymetry model

Ice shelves bathymetry, coastline and grounding line (NPI)

Accurate information about grounding line location, bedrock topography and ice draft under the ice shelves is crucial to perform accurate tidal simulations.

- Updated masks for grounding line and coastline, based on SAR interferometry, altimetry, and new Landsat-8/Sentinel-2 imagery
- Updated ice-shelf bathymetry and ice draft, based on recent bathymetry datasets.

A slightly updated version of the datasets is in prep. in collaboration with the Bedmap and SCAR-RINGS initiatives.

Combine coastline (red) with grounding line (blue), extraction of ice-shelf mask

Ice shelves bathymetry, coastline and grounding line (NPI)

Accurate information about grounding line location, bedrock topography and ice draft under the ice shelves is crucial to perform accurate tidal simulations.

• New combined grounding line & coastline used as tidal model grid land boundary, instead of GSHHS-2.3.7 coastline

Impact of the bathymetry choice on the tidal simulation

12

Impact of the bathymetry choice on the tidal simulation

13

Impact of the bathymetry choice on the tidal simulation

Optimal combination of bathymetry models to be finalized, but already

- Clear improvement when considering the new ALBATROSS bathymetry products
- ➔ Without fine tuning, ALBATROSS hydrodynamic simulation (no data constraint) at the level of FES2014 (assimilated)!

Sea ice surface roughness and bathymetry gradient location (UCL)

Bathymetry controls ocean currents, temperature... and sea ice presence

Seek a surface signature of bathymetry, in the sea ice roughness

Sea ice surface roughness and bathymetry gradient location (UCL)

Novel technique developed at ES_UCL using 20 years of NASA MISR (Multi-angle Imaging Spectro-Radiometer) with Operation Ice Bridge airborne data for training

See Johnson et al., 2022 (accepted) for similar approach in the Arctic Ocean

Conclusions

- > CryoSat-2 extremely valuable for tidal estimates and bathymetry retrievals
- > New ALBATROSS products bring clear improvement
- > Results on tidal simulations are very encouraging
- > Main difficulty: independent validation (lack of in situ observations for bathy & tides)

Last steps

- > Finalization of the regional tidal atlas (end of 2022)
- > WP3 Impact assessment (early 2023)
 - In the ocean (UCL) : Impact on the CryoSat-2 SSH and sea ice products (CryoSat+ Antarctic Ocean project)
 - Ice shelves (NPI): Impact on monitoring of Antarctic ice-shelf dynamics parameters

Planned outcomes

- > Southern Ocean composite bathymetry
- > Antarctic grounding line and coastline
- > Sea ice surface roughness product
- > Southern Ocean high-resolution tidal atlas

Interested in taking part in pre-release assessment (Jan.-March 2023)? Please contact us!

 Ξ

Report and a the second second

Thank you for your attention!

albatross.noveltis.fr

LU ABANA

ALBATROSS